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Motivation

• Discrete-valued time series, especially those with low counts,
commonly arise in various fields.

• Research attention paid on hierarchical forecasting for discrete-
valued hierarchical time series (HTS) is limited.

• The optimal combination reconciliation framework was de-
signed for continuous-valued HTSs and can not be directly
applied to discrete-valued HTSs.
• Support of forecasts should match the support of the variable

(Freeland & McCabe 2004).
• Transformation from continuous forecasts to integer decision in-

troduces additional operational costs.
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Motivation

To address these concerns, we propose a discrete forecast reconcili-
ation framework which

• first produces probabilistic forecasts for each series, then obtains
coherent joint predictive distribution for the HTS through
reconciliation,

• utilises scoring rules such as Brier Score to evaluate the forecasts
and train the reconciliation matrix,

• allows for the employment of forecasting methods for univariate
count time series in the literature.

5/28



Related Work

A series of work on forecast reconciliation for count HTSs:
• Corani, G., Azzimonti, D., Rubattu, N., & Antonucci, A. (2022). Probabilistic

Reconciliation of Count Time Series (arXiv:2207.09322). arXiv.

• Zambon, L., Azzimonti, D., & Corani, G. (2022). Efficient probabilistic recon-
ciliation of forecasts for real-valued and count time series (arXiv:2210.02286).
arXiv.

• Zambon, L., Agosto, A., Giudici, P., & Corani, G. (2023). Properties of the
reconciled distributions for Gaussian and count forecasts (arXiv:2303.15135).
arXiv.

The proposed framework conditions base probabilistic forecasts of
the most disaggregated series on base forecasts of aggregated se-
ries. However, it fails to restore the dependence structure within
hierarchical time series.
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Coherent and incoherent domain for discrete HTS

HTS Y = (Y1,Y2, . . . ,Yn)
′

basis time series (Y1,Y2, . . . ,Ym)
′

domain of i-th variable D(Yi ) = {0, 1, . . . ,Di}
Complete domain of HTS D(Y) = {0, . . . ,D1} × · · · × {0, . . . ,Dn}
Coherent domain of HTS D̃(Y) = {0, . . . ,D1} × · · · × {0, . . . ,Dm}
Incoherent domain of HTS D̂(Y) = D(Y)− D̃(Y)

• We assume domains of time series are finite.

• Coherent(Incoherent) domain is the set of all coherent(incoherent)
points.
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Example

Variables

D(Y1) = {0, 1},D(Y2) = {0, 1},
Y3 = Y1 + Y2,D(Y3) = {0, 1, 2}

Complete domain

D̂(Y) = {(0, 0, 0)′, (0, 1, 0)′, (1, 0, 0)′, (1, 1, 0)′,
(0, 0, 1)′, (0, 1, 1)′, (1, 0, 1)′, (1, 1, 1)′,

(0, 0, 2)′, (0, 1, 2)′, (1, 0, 2)′, (1, 1, 2)′} ,

Coherent domain

D̃(Y) = {(0, 0, 0)′, (0, 1, 1)′, (1, 0, 1)′, (1, 1, 2)′} .
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Coherency of probabilistic forecasts

Definition (Coherent forecast)
A probabilistic forecast is said to be coherent if it only assigns
positive probability to coherent points.

For example,

π̂ = (π̂(000), π̂(010), . . . , π̂(112))
′ = (0.01, 0.02, . . . , 0.03)′

π̃ = (π̃(000), π̃(011), π̃(101), π̃(112))
′ = (0.2, 0.3, 0.4, 0.1)′

• Modelling and forecasting multivariate discrete-valued time se-
ries directly can be challenging.

• We construct the incoherent base forecasts by assuming the
independence of the univariate forecasts.

π̂(001) = P̂r(Y1 = 0)× P̂r(Y2 = 0)× P̂r(Y3 = 1)
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The discrete forecast reconciliation framework

π̃ = Aπ̂,

where

• A = [aij ], i = 1, . . . , r , j = 1, . . . , q is an r × q reconciliation
matrix with following constraints:

0 ≤ aij ≤ 1,∀i , j
r∑

i=1

aij = 1,∀j
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The framework reconciles the base forecasts by proportionally as- 
signing the probability of each point in incoherent domain to 
points in the coherent domain:



The discrete forecast reconciliation framework

Movement restriction
• Probability of an incoherent point is proportionally assigned to
the cloest coherent points, in spirit similar with the projec-
tion idea in the optimal combination reconciliation framework.

• We choose the L1 norm as the distance measure.

d((0, 0, 0), (0, 0, 1)) = |(0, 0, 0)− (0, 0, 1)|1 = 1
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The discrete forecast reconciliation framework

Example

000 010 100 110 001 011 101 111 002 012 102 112


000 1 0.4 0.3 0.25 0.4 0 0 0 0.25 0 0 0
011 0 0.6 0 0.25 0.3 1 0 0.3 0.25 0.35 0 0
101 0 0 0.7 0.25 0.3 0 1 0.3 0.25 0 0.4 0
112 0 0 0 0.25 0 0 0 0.4 0.25 0.65 0.6 1
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Forecast evaluation

We use Brier Score to evaluate the reconciled forecasts. Given rec-
onciled forecasts π̃ and real observation Y, the Brier Score of the
forecasts is

BS =
r∑

k=1

(π̃i − zi)
2,

where zi = 1 if Y takes the i -th coherent point, otherwise zi = 0.
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Objective

• We employ the rolling origin strategy to construct forecast-
observation pairs, which are used to train the reconciliation ma-
trix A.

• The objective function is

min
A

1

τ

τ∑
t=1

(Aπ̂t − zt)
′(Aπ̂t − zt)

=min
aij

1

τ

τ∑
t=1

 r∑
i=1

(
q∑

j=1

aij π̂jt − z ti

)2


s.t.
r∑

i=1

aij = 1, 0 ≤ aij ≤ 1

• This is a standard quadratic programming problem.
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The DFR algorithm

Input time series

Rolling origin
transformation

Obtain h-step-
ahead forecasts
for each window

Obtain h-step-
ahead realization
for each window

Train reconciliation
matrix A1, . . . , Ah

Obtain h-step-
ahead base forecasts

π̂T+1, . . . , π̂T+h

Obtain h-step-ahead
reconciled distribution

Output coherent fore-
cast π̃T+1, . . . , π̃T+h

Figure: Flowchart of the DFR algorithm
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Stepwise Discrete Forecast Reconciliaiton (SDFR)

Challenge of the DFR algorithm
The number of unknown parameters grows exponentially as the
number of series in the hierarchy and the domain of bottom-level
series grow.
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Stepwise Discrete Forecast Reconciliaiton (SDFR)

1. Decompose the big hierarchy into multiple small sub-hierarchies.

2. Train the reconciliation model for each sub-hierarchy.

3. Combine the reconciled forecasts together under assumptions.
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Stepwise Discrete Forecast Reconciliaiton (SDFR)
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Simulation in cross-sectional setting

Base DBU DTD DFR

Y1 25.4 25.4 34.9 24.4
Y2 27.8 27.8 34.8 25.7
Y3 49.7 49.5 49.7 42.0
Y 74.4 47.8 56.1 44.0

• D(Y1) = {0, 1},D(Y2) = {0, 1},D(Y3) = {0, 1, 2}
• Discrete Bottom-Up(DBU) and Discrete Top-Down(DTD) are
discrete and probabilistic extensions of traditional bottom-up
and top-down methods.

• Please refer to our paper for more details.
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Simulation in temporal setting

• We construct a weekly-daily temporal hierarchy in this simula-
tion.

• D(Yi) = {0, 1}, i = 1, . . . , 7.

• SDFR is used in this simulation to handle the big hierarchy.

• Base probabilistic forecasts are produced using integer-valued
GARCH models (see e.g.,Liboschik et al. 2017).
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Simulation results in temporal setting

Base DBU DTD SDFR

Y1 40.8 40.8 49.4 41.0
Y2 41.4 41.4 49.6 41.6
Y3 42.1 42.1 49.9 42.1
Y4 43.0 43.0 50.0 42.8
Y5 43.6 43.6 50.2 43.1
Y6 44.0 44.0 50.3 43.3
Y7 44.3 44.3 50.3 43.9
Y8 82.6 83.5 82.6 83.1
Y 99.5 97.8 99.4 97.7

Table: Summarised Brier Score(×10−2) of test samples in temporal set-
ting.
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Forecasting crime number in Washington D.C.

• The dataset contains 231 weekly time series of offence crime
numbers from 2014 to 2022; each time series corresponds to
one census tracts in Washington D.C.

• We construct two-level temporal hierarchies (i.e., weekly and
four-weekly) and forecast the offence numbers in the next four
weeks for each time series.

• Samples whose forecast origin starts from 2022 are used for
evaluation.

• Base probabilistic forecasts are produced using integer-valued
GARCH models.

• DFR are used to reconcile the forecasts.
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Forecasting crime number in Washington D.C.

Figure: Example time series.
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Forecasting crime number in Washington D.C.

Mean Median

Base DBU DTD DFR Base DBU DTD DFR

Total 58.47 58.07 58.47 58.12 66.64 65.28 66.64 64.75
Bottom 34.41 34.41 34.80 34.30 13.73 13.73 13.28 10.82
Hierarchy 73.87 67.87 68.33 67.97 97.66 92.70 93.08 92.42

Table: Summarised Brier Score(×10−2) of test samples in crime forecast-
ing application.
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Forecasting crime number in Washington D.C.

MCB Test for hierarchy

Mean ranks

DFR − 2.18

DBU − 2.28

DTD − 2.47

Base − 3.07

2.2 2.4 2.6 2.8 3.0

MCB Test for total series

Mean ranks

DFR − 2.22

DBU − 2.56

DTD − 2.61

Base − 2.61

2.2 2.3 2.4 2.5 2.6

MCB Test for bottom series

Mean ranks

DFR − 1.90

Base − 2.70

DBU − 2.70

DTD − 2.70

2.0 2.2 2.4 2.6

Figure: MCB test results
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Conclusion

• We develop a novel forecast reconciliation framework for count
hierarchical time series, which involves assigning probabilities
from incoherent points to coherent points.

• We further propose a linear reconciliation algorithm that mini-
mizes brier score of reconciled probabilistic forecasts.

• To address the exponential growth of the domain, we introduce
a stepwise discrete reconciliation algorithm by breaking down a
large hierarchy into smaller ones.

• Our DFR and SDFR algorithms produce coherent probabilistic
forecasts and improve forecast accuracy, as shown in simulation
and empirical studies.
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Thank you!
Any questions/suggestions/comments?

Paper: https://arxiv.org/abs/2305.18809

Code: https://github.com/AngelPone/DiscreteRecon
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