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Motivation

• Non-negative and discrete-valued time series, particularly those
with low counts, commonly arise in various fields. Examples
include:
• occurrences of “black swan” events
• intermittent demand in the retail industry

• Despite the great concern of hierarchical forecasting in these
applications, limited research have been conducted.
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Motivation: the lesson learned from reconciliation approach

The forecast reconciliation approach
• first produces base forecasts for each series in the hierarchy;

then optimally reconciles the base forecasts through projec-
tion;

• utilises forecast combination, which improves forecast accu-
racy and reduces the risk of model misspecification;

• has been shown to improve forecast accuracy in various ap-
plications.

But it was designed for continuous-valued HTS and can not be
directly applied to discrete-valued HTS: projection may produce
non-integer and negative forecasts.
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Motivation: probabilistic forecasting

• While point and interval forecasts are most widely applied
in practice, attention has been shifted towards full predictive
distribution.

• When forecasting discrete-valued time series, it is also more
natural to produce predictive distribution.
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Related Work

A series of work on forecast reconciliation for count HTSs:
• Corani, G., Azzimonti, D., Rubattu, N., & Antonucci, A. (2022). Probabilistic

Reconciliation of Count Time Series (arXiv:2207.09322). arXiv.
• Zambon, L., Azzimonti, D., & Corani, G. (2022). Efficient probabilistic recon-

ciliation of forecasts for real-valued and count time series (arXiv:2210.02286).
arXiv.

• Zambon, L., Agosto, A., Giudici, P., & Corani, G. (2023). Properties of the
reconciled distributions for Gaussian and count forecasts (arXiv:2303.15135).
arXiv.

The proposed framework conditions base probabilistic forecasts
of the most disaggregated series on base forecasts of aggregated
series. However, it fails to restore the dependence structure
within hierarchical time series.
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Contribution

To address these concerns, we
• introduce the definition of coherent domain and coherent fore-

casts in the context of multivariate discrete random variables.
• propose a discrete forecast reconciliation framework.
• develop the DFR and Stepwise DFR (SDFR) algorithms to

train the reconciliation matrix.
• extend the top-down and bottom-up method to discrete prob-

abilistic setting for comparison.
• verify the applicability of the algorithms in simulation experi-

ments and real-world applications.
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Coherent and incoherent domain for discrete HTS

HTS Y = (Y1,Y2, . . . ,Yn)′

basis (e.g., bottom-level) time series Yb = (Y1,Y2, . . . ,Ym)′

domain of i-th variable D(Yi) = {0, 1, . . . ,Di}

Complete domain of Y is the Cartesian product of domains of
all variables.

D̂(Y) = {0, . . . ,D1} × · · · × {0, . . . ,Dn} q := |D̂(Y)|

Coherent domain of Y is a subset of D̂(Y), in which every point
respects the aggregation constraints.

D̃(Y) = {y|y ∈ D̂(Y), Syb = y} r := |D̃(Y)|

Incoherent domain of Y

D̄(Y) = D̂(Y)\D̃(Y)
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Example

Variables

D(Y1) = {0, 1},D(Y2) = {0, 1},
Y3 = Y1 + Y2,D(Y3) ∈ {0, 1, 2}

Complete domain

D̂(Y) = {(0, 0, 0)′, (0, 1, 0)′, (1, 0, 0)′, (1, 1, 0)′,
(0, 0, 1)′, (0, 1, 1)′, (1, 0, 1)′, (1, 1, 1)′,
(0, 0, 2)′, (0, 1, 2)′, (1, 0, 2)′, (1, 1, 2)′} ,

Coherent domain

D̃(Y) = {(0, 0, 0)′, (0, 1, 1)′, (1, 0, 1)′, (1, 1, 2)′} .
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Discrete coherence

Definition (Discrete Coherence)
A coherent discrete distribution has the property Pr(Y = y) =
0, ∀y ∈ D̄(Y). Any distribution not meeting this condition is an
incoherent distribution.

• We use a probability vector to represent the discrete predictive
distribution.

• Denote (potentially) incoherent base forecasts by π̂ and rec-
onciled forecasts by π̃.

π̂ := [π̂1, π̂2 . . . , π̂q]
′ := [π̂(y1,...,yn)(1) , . . . , π̂(y1,...,yn)(q)]

π̃ := [π̃1, π̃2 . . . , π̃r]
′ := [π̃(y1,...,yn)(1) , . . . , π̃(y1,...,yn)(r)]

11/35



Example

Base forecast

π̂ = [π̂1, π̂2 . . . , π̂12]
′ = [π̂(001), π̂(011) . . . , π̂(112)]

′

= [0.01, 0.02, . . . , 0.03]′

Reconciled forecast

π̃ = [π̃1, π̃2, π̃3, π̃4]
′ = [π̃(000), π̃(011), π̃(101)π̃(112)]

′

= [0.2, 0.3, 0.40.1]′
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The discrete reconciliation framework

π̃ = ψ(π̂) ψ : [0, 1]q → [0, 1]r

The linear reconciliation function

π̃ = Aπ̂

where, A = [aij], i = 1, . . . , r, j = 1, . . . , q is an r × q reconcilia-
tion matrix with following constraints:

0 ≤ aij ≤ 1,∀i, j
r∑

i=1
aij = 1,∀j

The framework reconciles the base forecasts by proportionally
assigning the probability of each point in complete domain to
points in the coherent domain.
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The discrete reconciliation framework

Example
000 010 100 110 001 011 101 111 002 012 102 112


000 0 0.4 0.3 0.25 0 0 0 0 0.3 0 1 0.2
011 0 0.4 0.3 0.25 0.2 0 0 1 0.3 1 0 0.3
101 0 0 0.3 0.25 0.4 0 1 0 0.3 0 0 0.5
112 1 0.2 0.1 0.25 0.4 1 0 0 0.1 0 0 0

• The framework allows the probability of a point in the com-
plete domain assigned to any point in the coherent domain.

• For example, in an extreme case, from a coherent point (000)
to another coherent point (112).

14/35



Movement restriction

Movement restriction strategy requires that the probability is
only assigned to the closest coherent points.
• This is similar to the projection idea in the optimal combina-

tion reconciliation framework.
• A coherent point in the complete domain moves all of its

probability to the same point in the coherent domain.
• We choose the L1 norm as the distance measure.

d((0, 0, 0), (0, 0, 1)) = |(0, 0, 0)− (0, 0, 1)|1 = 1
Example

000 010 100 110 001 011 101 111 002 012 102 112


000 1 0.4 0.3 0.25 0.4 0 0 0 0.3 0 0 0
011 0 0.6 0 0.25 0.3 1 0 0.3 0.3 0.35 0 0
101 0 0 0.7 0.25 0.3 0 1 0.3 0.3 0 0.4 0
112 0 0 0 0.25 0 0 0 0.4 0.1 0.65 0.6 1
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Forecast evaluation

• Scoring rules assess the quality of probabilistic forecasts, by
assigning a numerical score based on the predictive distribu-
tion and on the corresponding observation.

• Brier Score can be used to evaluate the probabilistic forecasts
of discrete variables.

BS =
r∑

k=1
(π̃k − zk)

2,

where zk = 1 if Y takes the k-th coherent point, and zk = 0
otherwise.
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The DFR algorithm: Objective

By minimising the average Brier Score of τ reconciled forecasts,
we can find the optimal reconciliation matrix.

min
A

1
τ

τ∑
t=1

(Aπ̂t − zt)
′(Aπ̂t − zt)

=min
aij

1
τ

 r∑
i=1

( q∑
j=1

aijπ̂jt − zt
i

)2


s.t.
r∑

i=1
aij = 1, 0 ≤ aij ≤ 1

This is a standard quadratic programming problem.
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The DFR algorithm: constructing training samples

We employ the expanding window strategy to construct the τ
training samples.

Time

Training Forecasting
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The DFR algorithm: constructing π̂

We construct the incoherent base forecasts π̂ by assuming the
independence of univariate base forecasts.

1. Generate predictive distributions for each time series in the
hierarchy using arbitrary univariate forecasting model.

2. Construct the joint distribution by assuming independence.

Example
π̂Y1 = [0.4, 0.6]′ π̂Y2 = [0.3, 0.7]′ π̂Y3 = [0.2, 0.2, 0.6]′
π̂(001) = Pr(Y1 = 0)× Pr(Y2 = 0)× Pr(Y3 = 1) = 0.024

π̂ = [0.024, 0.056, 0.036, 0.084,
0.024, 0.056, 0.036, 0.084,
0.072, 0.168, 0.108, 0.252]′
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The DFR algorithm

Figure: Flowchart of the DFR algorithm
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Stepwise DFR (SDFR): handling high-dimensional hierarchy

• The number of unknown parameters in A grows exponentially
as the number of time series and the cardinality of domains
of bottom-level series grow.

• We propose the Stepwise DFR (SDFR) algorithm to deal with
this problem.

• It reduces the number of unknown parameters from exponen-
tial level to cubic level.
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Stepwise DFR (SDFR): handling high-dimensional hierarchy

1. Decompose the big hierarchy into multiple small sub-hierarchies.
2. Train the reconciliation model for each sub-hierarchy.
3. Combine the reconciled forecasts together under assumptions.

P(Y0,Y1,Y2,Y3) = P(Y0,Y1, S2)P(Y2,Y3|S2)
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Stepwise DFR (SDFR): handling high-dimensional hierarchy
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Discrete Bottom-up

• The discrete bottom-up method constructs a coherent distri-
bution by assuming independent bottom-level forecasts.

• This method follows the same procedure as constructing base
forecasts explained earlier except that the base forecasts of
aggregated series are excluded.

• The mean point forecasts obtained from this coherent distri-
bution’s marginal distribution are identical to those obtained
by directly aggregating mean forecasts of bottom-level series.

Example

π̂Y1 = [0.4, 0.6]′ π̂Y2 = [0.3, 0.7]′

π̃(000) = Pr(Y1 = 0)× Pr(Y2 = 0) = 0.12
π̃ = [0.12, 0.28, 0.18, 0.42]′
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Discrete Top-down

The discrete top-down method extends the traditional top-down
by proportionally disaggregating the probabilities of each point
of the total series into all possible coherent points, using a ratio
computed from historical occurrences.
Example
40 (1, 0, 1) and 60 (0, 1, 1) observed in the history.

π̂Y3 = [0.2, 0.3, 0.5]′

π̃(011) = Pr(Y3 = 1)× 60
60 + 40 = 0.18

π̃ = [0.2, 0.18, 0.12, 0.5]′
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Simulation in cross-sectional setting

• D(Y1) = {0, 1},D(Y2) = {0, 1},Y3 = Y1 + Y2
• We produce and evaluate one-step-ahead forecast in this ex-

periment.
• For each binary series, we generate 480 observations; expand-

ing window strategy yields 330 samples for training and 30
samples for testing.

• The performances for each time series are evaluated based on
the average Brier scores of test samples.

• The base probabilistic forecasts are obtained using the bino-
mial AR(1) model.

• The procedure was repeated 1000 times.
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Simulation in cross-sectional setting

Table: Average Brier score (×10−2) of 1000 simulations for cross-
sectional setting

Base DBU DTD DFR
Y1 25.4 25.4 34.9 24.4
Y2 27.8 27.8 34.8 25.7
Y3 49.7 49.5 49.7 42.0
Y 74.4 47.8 56.1 44.0
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Simulation in temporal setting

• We construct a weekly-daily temporal hierarchy in this simu-
lation.

• D(Yi) = {0, 1}, i = 1, ..., 7.
• SDFR is used in this simulation to handle the big hierarchy.
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Simulation in temporal setting

Table: Average Brier score (×10−2) of 1000 samples for temporal
setting.

Base DBU DTD SDFR
Y1 40.8 40.8 49.4 41.0
Y2 41.4 41.4 49.6 41.6
Y3 42.1 42.1 49.9 42.1
Y4 43.0 43.0 50.0 42.8
Y5 43.6 43.6 50.2 43.1
Y6 44.0 44.0 50.3 43.3
Y7 44.3 44.3 50.3 43.9
Y8 82.6 83.5 82.6 83.1
Y 99.5 97.8 99.4 97.7
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Forecasting crime number in Washington D.C.

• The dataset contains 231 weekly time series of offence crime
numbers from 2014 to 2022; each time series corresponds to
one census tracts in Washington D.C.

• We construct two-level temporal hierarchies (i.e., weekly and
four-weekly) and forecast the offence numbers in the next four
weeks for each time series.

• Samples whose forecast origin starts from 2022 are used for
evaluation.

• Base probabilistic forecasts are produced using integer-valued
GARCH models.

• DFR are used to reconcile the forecasts.
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Forecasting crime number in Washington D.C.

Figure: Example time series

31/35



Forecasting crime number in Washington D.C.

Table: Summarised Brier Score(×10−2) of test samples in crime
forecasting application.

Mean Median
Base DBU DTD DFR Base DBU DTD DFR

Total 58.47 58.07 58.47 58.12 66.64 65.28 66.64 64.75
Bottom 34.41 34.41 34.80 34.30 13.73 13.73 13.28 10.82

Hierarchy 73.87 67.87 68.33 67.97 97.66 92.70 93.08 92.42
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Forecasting crime number in Washington D.C.

MCB Test for hierarchy

Mean ranks

DFR − 2.18

DBU − 2.28

DTD − 2.47

Base − 3.07

2.2 2.4 2.6 2.8 3.0

MCB Test for total series

Mean ranks

DFR − 2.22

DBU − 2.56

DTD − 2.61

Base − 2.61

2.2 2.3 2.4 2.5 2.6

MCB Test for bottom series

Mean ranks

DFR − 1.90

Base − 2.70

DBU − 2.70

DTD − 2.70

2.0 2.2 2.4 2.6

Figure: MCB test results
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Conclusion

• We develop a novel forecast reconciliation framework for count
hierarchical time series, which involves assigning probabilities
from incoherent points to coherent points.

• We further propose a linear reconciliation algorithm that min-
imises Brier score of reconciled probabilistic forecasts.

• To address the exponential growth of the domain, we intro-
duce a stepwise discrete reconciliation algorithm by breaking
down a large hierarchy into smaller ones.

• Our DFR and SDFR algorithms produce coherent probabilistic
forecasts and improve forecast accuracy, as shown in simula-
tion and empirical studies.
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Thank you!
Any questions/suggestions/comments?

Paper: https://arxiv.org/abs/2305.18809
Package: https://github.com/AngelPone/DiscreteRecon

https://arxiv.org/abs/2305.18809
https://github.com/AngelPone/DiscreteRecon
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